
- Wprowadzenie
- Niedożywienie: podstawowy czynnik ryzyka ciężkiego przebiegu odry
- Rola witamin, antyoksydantów i mikroelementów w zapobieganiu i leczeniu odry
- Ograniczanie stresu oksydacyjnego i nadmiernego stanu zapalnego
- Wzmacnianie bariery śluzówkowej i ochrona płuc
- Hamowanie replikacji i rozprzestrzeniania się wirusa
- Wsparcie produkcji energii i naprawy komórek
- Zastosowanie kliniczne: Teoria „ToolKit” w leczeniu odry
- Rola odżywiania w historycznym spadku śmiertelności z powodu odry
Treść, którą próbujesz wyświetlić, jest dostępna tylko dla członków naszej witryny. Jeśli masz już członkostwo, musisz się zalogować, aby je zobaczyć. Kliknij ten link, jeśli chcesz się zarejestrować .
Already a member? Zaloguj się tutaj
Źródło
1. Dossetor J, Whittle HC, Greenwood BM (1977) Persistent measles infection in malnourished children. Br Med J. 1:1633-1635.2. Eskenazi B, Rauch S, Elsiwi B, Bornman R, Obida M, Brewer A, Ward BJ, Chevrier J. Undernutrition and antibody response to measles, tetanus and Haemophilus Influenzae type b (Hib) vaccination in pre-school south African children: The VHEMBE birth cohort study. Vaccine. 2025 Feb 6;46:126564. doi: 10.1016/j.vaccine.2024.126564. Epub 2024 Dec 10. PMID: 39665976; PMCID: PMC11750586.3. Fu H, Flasche S (2025) Modelling the role of undernutrition in measles transmission and vaccination. [cited 2025 Mar 13]4. Noori N, Skrip LA, Oron AP, McCarthy KA, Proctor JL, Chabot-Couture G, Althouse BM, Phelan KPQ, Trehan I. Potential Impacts of Mass Nutritional Supplementation on Measles Dynamics: A Simulation Study. Am J Trop Med Hyg. 2022 Sep 12;107(4):863-872. doi: 10.4269/ajtmh.21-1083. PMID: 36096407; PMCID: PMC9651531.5. Salama P, Assefa F, Talley L, et al. (2001) Malnutrition, measles, mortality, and the humanitarian response during a famine in Ehiopia. JAMA. 286:563-5716. WHO. (2024) Measles7. Tran IC, Gregory C, O'Connor P, et al. (2023) A scoping review on the associations and potential pathways between malnutrition and measles.8. ISOM. COVID-19. ISOM9. Grant WB, Wimalawansa SJ, Pludowski P, Cheng RZ (2025) Vitamin D: Evidence-Based Health Benefits and Recommendations for Population Guidelines. Nutrients, 17:277.10. Dabbagh-Bazarbachi H, Clergeaud G, Quesada IM, et al. (2014) Zinc ionophore activity of quercetin and epigallocatechin-gallate: from Hepa 1-6 cells to a liposome model. J Agric Food Chem. 62:8085-8093.11. Agrawal PK, Agrawal C, Blunden G (2020) Quercetin: Antiviral Significance and Possible COVID-19 Integrative Considerations. Natural Product Comm. 15:1934578X20976293.12. Santus P, Danzo F, Zuffi A, et al. (2022) Oxidative stress and viral Infections: rationale, experiences, and perspectives on N-acetylcysteine. Eur Rev Med Pharmacol Sci. 26:8582-8590.13. Lin W-HW, Nelson AN, Ryon JJ, et al. (2017) Plasma Cytokines and Chemokines in Zambian Children With Measles: Innate Responses and Association With HIV-1 Coinfection and In-Hospital Mortality. J Infect Dis. 215:830-839.14. Veklych KA, Popov MM, Liadova TI, et al. (2021) [Cytokine profile of patients with the measles infection of varying severity.] Pathologia 18:66-71.15. Solmaz A, İlter S, Koyuncu İ, Gümüş, HA (2022) A Predictor of Oxidative Stress in the Children with Measles: Thiol-Disulfide Homeostasis. Turk Arch Pediatr. 57:200-204.16. Cemek, M, Dede S, Bayiroglu F, et al. (2007) Oxidant and non-enzymatic antioxidant status in measles. J Trop Pediatr. 53:83-86.17. Abilés J, Pérez de la Cruz A, Castaño J, et al. (2006) Oxidative stress is increased in critically ill patients according to antioxidant vitamins intake, independent of severity: a cohort study. Crit Care 10:R146.18. Cheng RZ (2022) A Hallmark of Covid-19: Cytokine Storm/Oxidative Stress and its Integrative Mechanism. Orthomolecular Med News Serv.19. Cheng RZ (2020) Vitamin C in the Treatment and Prevention of COVID-19. ISOM20. Cheng RZ (2021) Vitamin C and COVID-19: Orthomolecular Medicine for Improving Patient Outcomes. ISOM,21. Cheng RZ (2019) Integrative Antioxidant Therapy in the Treatment of a Severe Covid-19 Patient. Cheng Integrative Health Center,22. Passwater M, Cheng RZ (2023) How to improve medical care: include treatment with nutritional supplements. Orthomolecular Med News Serv.23. Spearow JL, Copeland, L (2020) Review: Improving Therapeutics for COVID-19 with Glutathione-boosting Treatments that Improve Immune Responses and Reduce the Severity of Viral Infections.24. Whelan C (2024) Glutathione Benefits for Your Health and Body25. Maciejczyk M, Żebrowska E, Nesterowicz M, et al. (2022) α-Lipoic Acid Strengthens the Antioxidant Barrier and Reduces Oxidative, Nitrosative, and Glycative Damage, as well as Inhibits Inflammation and Apoptosis in the Hypothalamus but Not in the Cerebral Cortex of Insulin-Resistant Rats. Oxidative Med Cell Longevity, 2022:7450514.26. Superti F, Russo R (2024) Alpha-Lipoic Acid: Biological Mechanisms and Health Benefits. Antioxidants, 13:122827. Patchen BK, Balte P, Bartz TM, et al. (2023) Investigating Associations of Omega-3 Fatty Acids, Lung Function Decline, and Airway Obstruction. Am J Respir Crit Care Med. 208:846-857.28. Rogero MM, de C Leão M, Santana TM, et al. (2020) Potential benefits and risks of omega-3 fatty acids supplementation to patients with COVID-19. Free Radic Biol Med. 156:190-199.29. Levy T (2019) Magnesium: Reversing Disease. Medfox Pub. ISBN-13: 978-0998312408.30. Dean, C. The Magnesium Miracle (Second Edition). Ballantine Books. ISBN-13: 978-039959444131. Colunga Biancatelli RML, Berrill M, Catravas JD, Marik, P. E. (2020) Quercetin and Vitamin C: An Experimental, Synergistic Therapy for the Prevention and Treatment of SARS-CoV-2 Related Disease (COVID-19). Front Immunol. 11:1451